Prediction of the Damping-Controlled
Response of Offshore Structures
to Random Wave Excitation

J. Kim Vandiver, SPE-AIME, Massachusetts Inst. of Technology

Abstract

A method is presented for predicting the damping-
controlled response of a structure at a known natural
frequency to random wave forces. The principal
advantage of the proposed method over those in
current use is that the explicit calculation of wave
forces is not required. in the analysis. This is ac-
complished by application of the principle of
reciprocity: that the linear wave force spectrum for a
particular vibration mode is proportional to the
radiation (wave-making) damping of that mode.
Several example calculations are presented including
the prediction of the heave response of a tension-leg
platform. The directional distribution of the wave
spectrum is included in the analysis.

Introduction

This paper introduces a simple procedure for
estimating the dynamic response of a structure at
each of its natural frequencies to the random ex-
citation of ocean waves. The principal advantage of
the proposed method is that the explicit calculation
of wave forces has been eliminated from the analysis.
This is made possible by a direct application of the
reciprocity relations for ocean waves, originallg
established by Haskind! and described by Newman,

in a form that is easy to implement, Briefly stated,
for many structures it is possible to derive a simple
expression for the wave force spectrum in terms of
the radiation damping and the prescribed wave
amplitude spectrum. In general, such a substitution is
of little use because the radiation damping coefficient
may be equally difficult to find. However, the
substitution leads to a very useful result when the
dynamically amplified response at a natural
frequency is of concern. In such cases it is shown
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that, contrary to popular belief, the response is not
inversely proportional to the total damping but is, in
fact, proportional to the ratio of the radiation
damping to the total damping. This is because the
radiation damping and the wave exciting forces are
not independent quantities. Therefore, in the absence
of a reliable estimate of either the total damping or
the ratio of the radiation component to the total, an
upper bound estimate of the response still may be
achieved because the ratio is, at most, one. The
demonstration of the existence of this upper bound is
one of the key contributions of this paper.

Linear wave theory is assumed; therefore, ex-
citation caused by drag forces is not considered.
However, for many structures drag excitation is
negligible except for very large wave events. In the
design process exireme events are modeled deter-
ministically by means of a prescribed design wave
and not stochastically as is done here. In many
circumstances linear wave forces will dominate, and
the results shown here will be applicable. Although
drag-exciting forces are not included, damping
resulting from hydrodynamic drag is included. Wave
diffraction effects are extremely difficult to
calculate. This analysis includes diffraction effects
but never requires explicit evaluation of them,

It has been recognized that directional spreading of
the wave spectrum is an important consideration in
the estimation of dynamic response. In this paper
such effects are accounted for in closed-form ex-
pressions. The evaluation of the expressions requires
knowledge of estimates of the variation of the modal
exciting force with wave incidence angle. However,
only the relative variation of the modal exciting force
as a percent of that at an arbitrarily chosen reference
angle is required. Evaluation of the wave force in
absolute terms still is not required.



There are numerous applications of present in-
terest. For example, the fatigue analysis of a tension-
leg platform must include an estimate of the am-
plified responses at the natural frequencies of the
structure in heave, pitch, and roll. This method
quickly provides that response estimate. An example
calculation for the heave response of a tension-leg
platform is included. Two additional examples are
provided, which exploit simplifications that
frequently may be useful. The first is the case where
the wave-exciting force is independent of incidence
angle, as would be true when considering the heave
response of a structure with a vertical axis of sym-
metry. The second example illustrates the sim-
plifications obtained when the wave spectrum is
distributed broadly in incidence angle.

The techniques applied in this paper are new to the
field of ocean engineering. However, they are not
without precedent and have found extensive ap-
plication in the fields of acoustics and vibration.3

Linear Oscillator Model

A structure in the ocean may have a large number of
natural frequencies, although at only a few is the
dynamic response to wave excitation likely to be
important. It is convenient for the purpose of this
paper to assume that by using the technigues of
modal analysis each of the responding natural modes
may be modeled as an independent single-degree-of-
freedom resonator. The general requirements for this
are that the vibration of the structure behave in a
linear fashion and that the damping be small. The
motivation for using modal analysis is that it is far
simpler mathematically to analyze a few independent
single-degree-of-freedomm models than one large,
coupled, multidegree-of-freedom system. Ref. 4
presents a thorough discussion of modal analysis,
and Ref. 5 demonstrates its application to offshore
structures. In some cases the technique of modal
analysis does not eliminate all of the damping-related
coupling terms between modes. For the response
predictions considered in this paper this generally is
not a problem. Supporting discussion is presented
later.

This paper will be presented in terms of the
response of a simple single-degree-of-freedom
resonator excited by ocean wave forces. The results
should be interpreted in the larger context of modal
analysis: that the total response of a structure can be
obtained by a superposition of the individual
responses of the modes of interest, Although it will
not always be stated explicitly, the coefficients and
variables of the single-degree-of-freedom system
must be expressed in terms of the appropriate modal
quantities for the specific natural mode being
modeled.

The equation of motion for the single-degree-of-
freedom resonator excited by ocean waves will
contain terms corresponding to hydrodynamic forces
as well as purely mechanical ones, such as structural
stiffness. The hydrodynamic exciting forces usually
will be a function of the relative acceleration,
velocity, and displacement between the water par-
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ticles and the generalized coordinates that represent
the motion of the structure. For structures that
behave in a linear fashion, these quantities may be
expressed separately. Thus, the loads on the
resonator resulting from its motion in an otherwise
calm ocean may be added to the forces exerted on the
resonator when held rigidly in place and loaded by
the passage of ocean waves. This may be expressed
mathematically as follows, where the coefficients are
often functions of frequency.

(m+m )3+ (R;+R g+ R )5+ (K5+K,,y)s
=f(aY+eg(M+hin), ... .. i 8}

where the response quantities are:
m = modal mass of structure,
m, = modal added mass of water,

R; = linear internal structural modal damping,

not related to the presence of the fluid,

R,,; = radiation or wave-making damping of the
mode (a linear frequency dependent term
that may be expressed by potential flow
theory),

R, = viscous fluid modal damping (due to the
assumption of light damping, it is
assumed that an equivalent linearization
will be adequate),

s = appropriate normal coordinate obtained by
modal analysis for this particular mode,

= structural modal stiffness, and

= hydrostatic modal stiffness that arises from
changes in displacement of a body on the
free surface.

On the right-hand side appear the excitation
quantities that are functions of the water particle
acceleration, velocity, and displacement #, %, and #,
respectively.

g(n) =drag force excitation term that is
assumed small compared with the
other two terms and is dropped,
and

Sf(#),h(n) =hydrodynamic modal forces that
normally would be calculated from
potential flow theory by integrating
the pressure over the surface of the
body; these are, in fact, the inertial
and hydrostatic forces exerted by
passing waves,

The exciting forces appearing on the right-hand side
are the modal forces that would be exerted on the
body if it were held rigidly in place. These forces
include all linear diffraction effects. A principal
conclusion of this paper is that these forces need not
be evaluated explicitly to obtain an estimate of the
mean square response of a particular vibration mode.
For the assumption of wave force linearity to be
valid, the ratio of wave amplitude to structural
member diameter must be on the order of one or less.
For circular members in oscillating flow this
corresponds to a Kuelengan Carpenter number of
less than 2x. The results presented in this paper are

K
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not valid for structures composed of small members
exposed to iarge waves. However, high-cycle low-
stress fatigue considerations require estimates of
response in low sea states, where for even relatively
small members the forces are essentially linear. In
such circumstances the results presented here will be
useful,

Eq. 1 is of the form of a simple single-degree-of-
freedom oscillator, as simplified by

m,§+ Rrs+Ks=F(t),.............. 2)

where:
m,, = total virtual mass,
R 7 = total damping,
K = total stiffness, and
F(t) = modal exciting force.

The undamped natural frequency and the damping
ratio are given by these familiar expressions:

Wo = NK/Myy s oo (3)
R
e 4
2w,my,

m,,, Ry, and K generally may not be assumed in-
dependent of frequency. However, in the following
analysis, the frequency range of interest is confined
to a narrow band about the natural frequency.
Within this band we assume that m,, and X do not
vary. However, the frequency dependence of R may
not be disregarded so easily. The radiation damping
portion of Ry is strongly frequency dependent.
Because the behavior of an oscillator at resonance is
damping controlled, the nature of the damping must
be well-understood before simplifying assumptions
are made.

Reciprocity Relations

The evaluation of hydrodynamic forces on a body in
an incident wave system is difficult. It is necessary to
know not only the hydrodynamic pressure in the
incident wave system but also the effects on this
pressure field due to the presence of the body. The
incident pressure field is relatively easy to evaluate,
but the diffraction effects usually are extremely
difficult to obtain. Haskind' and Newman? have
presented expressions for the exciting forces and
moments on a fixed body that do not require
knowledge of the diffraction effects but depend
instead on the velocity potential for forced
oscillations of the body in calm water. In other
words, there is a direct relationship between the
radiation damping on a body that is forced to
oscillate in calm water and the force exerted on that
body when it is held fixed in incident waves.

Newman evaluated the expressions for an arbitrary
three-dimensional body ecither on the surface or
submerged in terms of the six generalized coordinates
and forces relating to the six rigid-body degrees of
freedom.

In general, one would desire the relation between
the modal radiation damping coefficient and the
modal exciting force. The modal exciting force and,
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therefore, the modal radiation damping may be
obtained by a linear transformation from the six
generalized forces in accordance with the method of
modal analysis,

The Haskind/Newman relation is stated here in
terms of the modal quantities necessary in the
remainder of this discussion:

w3 SZWIF(w,B) |2
0 1A (w,B) 12

Rrad("’) = 47rp33

where;

R,,4(w) = radiation damping coefficient for the
natural mode of interest,

F(w,B) = modal exicting force exerted on the
fixed body by a system of plane
deepwater waves of frequency w and
amplitude A (w,3), incident on the
body at an angle 8; F(w,8) and
A(w,3) both have an e*’ time-
dependent term which will not be
explicitly written out,

p = density of water, and
£ = acceleration of gravity.

Eq. 5 states that the modal radiation damping
coefficient is proportional to the integral of the
square of the modal exciting force, integrated over
all angles of incidence.

Vugts® experimentally confirmed the validity of
these results in a series of model tests published in
1968.

In general, for an arbitrary body the wave forces
will depend on the shape of the body and the angle of
incidence of the waves. For this analysis it is useful to
have a shape function defined as

F(w,p)

A{wfB)
I' is a measure of the modal force per unit wave
amplitude as a function of wave frequency and in-

cidence angle. A mean square value of I" computed
over all incidence angles is given simply by

1 SZTIF(w,B) |2
270 14 (w,B) 2

F(wg) =

(IT12y5 = dé. ... ..... (7)

Therefore, from Eq. 5, R,,; (w) may be expressed in
terms of the mean square value of I':

w3
2pg°
Eq. 6 may be rewritten as

R g (@) = T2 i (8)

F(w,3) = A(w,8) T(w,B).

This is the modal wave force due to the incidence of
regular waves of a single frequency and incidence
angle. Again, the time-dependent ' term is implied
and not explicitly written. Because only linear
processes are being considered, superposition of
waves of many frequencies and incidence angles
results in a modal wave force spectrum of this form:

Sp(wB) = S, (w,B8)IT(wp) 12



When possible the modal force spectrum may be
simplified further by integrating this expression over
all incidence angles:

27
Sk (@) =j0 S, (@.8) IT(wB)12d8 . ... .. (1)

It is desirable to normalize this expression with
respect to the simple wave amplitude spectrum and
the mean square value of the shape function. The
resulting nondimensional normalized modal force is
designated by the symbol C|, which for any given
structure, sea state, and natural frequency is a
constant expressed as:

Sp(w)

€ = S, (@) Ir1%y,

2x
[, Si@8 T8 12ds
S, (@)(IT12y

Using €, the modal wave force spectrum may be
expressed as

Sp(w) = Cp S, ()T g,

C, is a measure of the influence of directional
spreading of the seas or angular dependence of the
shape function. As will be shown, C; = 1 whenever
the seas are distributed broadly in direction or the
modal force is insensitive to changes in incidence
angle. Three examples at the end of the paper show
how to obtain C .

From Eq. 8 the mean square value of I' may be
expressed in terms of the radiation damping. Sub-
stitution into Eq. 13 results in

2pg3
Splw) = C) Sy (w) e Ry (w) .

..... (14)
This is a result of considerable utility. The wave force
spectrum has been expressed in terms of the simple
wave amplitude spectrum and the radiation damping,
This result leads to useful expressions for the
response of the resonator.

Response of a Single-Degree-of-Freedom
Resonator to Random Excitation

Through the use of modal analysis, the total
structural vibration has been expressed in terms of a
set of independent single-degree-of-freedom
oscillators, one for each vibration mode. If the
displacement of one of these oscillators is denoted by
5, the displacement response spectrum to the modal
wave force spectrum Sg () is given by

Se{w) = Sp() H ()12, .0 .. (15)

where Hg(w) is the complex frequency response of
the r4esonator and may be found in any vibrations
text.

1/K?

IH (w)12 = .. (16)

The modal wave force spectrum and, con-
sequently, the modal radiation damping, R, (w),
vary with frequency. The total damping ratio ¢,
through its dependence on R, ;{(w), also is a
frequency dependent term. The remainder of this
section is devoted to presenting a simple but accurate
expression for the response of the resonator that
arises from the damping-controlled resonant peak
that is centered on the natural frequency,

From random vibration theory, the mean square
of a process is given by the integral of the spectrum
over all frequencies. Therefore, the mean square
displacement is given by

(s%) =§:Ss(w)dw =g:sp(w) |H (w) 1 2de

where, for engineering purposes, only positive
frequencies are allowed.
If the force spectrum is a constant, S,, over all

frequencies, the mean square displacement is simply
(s2) = SOSOIHS(w)IZdw. ............. (18)

For light constant damping (i.e., { = 0.15) the value

of this integral is approximated closely by this ex-

pression, which may be found in the text by Lyon?:
S, TS,

(s%y = = e (19)
4mrv2 ""’03 ¢ 2RT""'lrv“’o2

where Rr = R; + R, + R,,,, the total damping of
the resonator. The largest contribution to this in-
tegral comes from the damping-controlled peak in
|H, {w) 12, which is confined to a narrow band of
frequencies about the natural frequency w,. In fact,
64% can be attributed to the small band in
frequency, w, + {w,, known as the half-power
bandwidth, Aw = 2{w,. The mean square response
to S, in the half-power band may be expressed as

wﬂ(l+§.)
(s?Yay = ij ) )IHS(w)Izdw
S
= e LT (20)
Rymyw,
2
2
<—S<S;‘;“‘" = S =6 1)

If the limits of integration in Eq. 20 are doubled to
include two half-power bandwidths, w, * 2{w,,
then 80% of the total dynamic response will be in-
cluded:

0.4xS,
R ll""ﬂ”‘rv“"n:)2

An accurate estimate of the mean square response
of a lightly damped resonator excited by ocean waves
may be obtained in a half-power bandwidth. This
may be done by assuming that the values of the wave
force spectrum and the radiation damping at the
natural frequency of the resonator, w,, represent
acceptable averages over the band Aw., This

(5235 =
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assumption provides a simple but reasonably ac-
curate estimate of the damping-controlled dynamic
response in the half-power band, Aw:

Splwg)

Lt (23)
Rr{wy) m‘w“’o2

() g =

The error introduced by this approximation is
related directly to the width of the half-power band
Aw = 2{w, and, therefore, to the total damping {.
For very low damping ({ = 0.05) the error is
negligible. This was confirmed by a numerical in-
tegration of Eq. 20 over the half-power band for a
variety of cases in which the wave force spectrum and
radiation damping were allowed to vary with
frequency in a realistic fashion. The worst case
results indicate that the error introduced by using the
approximation of Eq. 22 was less than 2% for { =
0.05. This error will increase with an increase in the
total damping {. However, for any specific ap-
plication the frequency dependence of the wave force
spectrum Sg(w) and the total damping ratio { may
be estimated in the neighborhood of the natural
frequency w,. The actual error may be accounted for
by evaluating the ratio between the expressions
provided in Eqs. 23 and 20. Such a procedure would
allow the extension of the simple results of Eq. 20 10
include total damping values as high as 10 or 15%.

In the case of very low total damping (¢ < 0.05)
the assumption of constant force spectrum and total
damping may be increased to include a greater
portion of the damping-controlled peak. For
example, Eq. 22 may be used to provide an estimate
of the damping-controlled response in a region which
is two half-power bandwidths wide. For { = 0.05 the
worst case error increases to only 6%, and ap-
proximately 80% of the total dynamic response is
contained in the prediction given by

0.47 S (w,)

52 =
9200 R]‘"(""o)mru““"o2

To simplify the presentation in the remainder of
the paper, response estimates will be made for the
region defined by a single half-power bandwidth
using Eq. 23. It is implied that other estimates using
broader bands, such as Eq. 24, also may be used,

though larger errors will result.

Elimination of Explicit
Calculation of Wave Forces

The reciprocity relation was used to derive an ex-
pression for the modal wave force spectrum in terms
of the radiation damping (Eq. 14). This expression
may be substituted in Eq. 23 to obtain an expression
for the mean square response in the half-power band,
which does not require explicit calculation of the
wave force spectrum;

2C, ng Sn () Rppqlw,)
Rr(w,)

2
(s )Aw =
5
my,w,

The most important feature revealed by this ex-
pression is that the damping-controlled response of a
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Fig. 1 — Oceanographic mooring.

resonator excited by linear ocean wave forces is
dependent on the ratio of the radiation to total
damping evaluated at the natural frequency, «,. It is
often easier to estimate the ratio R4 (w, )} /Ry (wy)
than it is to evaluate R,;;(w,). Furthermore,
because this ratio can never exceed one, an upper
bound estimate still may be achieved without any
knowledge of the ratio. This upper bound is in-
dependent of damping. The widely held belief that
the response of a structure at a natural frequency
increases without bound as the damping is decreased
is simply not true when the excitation is provided by
linear wave forces. This is a consequence of the
reciprocity relation stated in Eq. 5. It is impossible to
reduce the radiation damping without also reducing
the exciting forces, thus resulting in a bounded
response.

The unevaluated constant C, is dependent on the
shape of the structure and the directionality of the
wave spectrum. The following three examples will
evaluate C;. These examples were selected because
they may be extended directly to a large variety of
ocean structures.

Sample Response Calculations

Example 1;: Heave Response
of an Oceanographic Mooring

The results of this example apply to any structure for
which it may be argued that the modal force is in-
dependent of wave incidence angle.

Consider the simple oceanographic mooring
shown in Fig. 1. It consists of a submerged spherical
float and a tripod elastic tether. The undamped
natural frequency in heave is given by Eq. 3, where X
is a linear stiffness coefficient for small vertical

9



motions. The modal force for vibration in the ver-
tical direction is simply the generalized force in the
vertical direction on the float. Furthermore, because
the float has a vertical axis of symmetry, the heave
exciting force is independent of the angle of incidence
of the waves; therefore, I'(w,3) is a function of w
only.

The modal exciting force is derived from Eq. 11.
Because I' is independent of &, it may be moved
outside of the integral. Note that in this case the
magnitude squared of T" and its mean square with
respect to 3 must be equal:

ITIZ = (T35 . oo (26)
Therefore,
2x
Sp(w) = (FFIZ)BEOSn(w,ﬁ)dB .......... 7
= (TI2) 8, (@), e (28)

because the integration of the directional wave
spectrum over all incidence angles results in the
simple wave amplitude spectrum.

This result, when substituted into Eq. 12, reveals
that C; = 1. 1t follows from Eq. 14 that the heave
exciting force spectrum is given by

208°
Sp(w) = Sn(w) ? Rmd(w), ......... (29)

where R,,;(w) is the modal radiation damping of
the axi-symmetric float for heave motions.

The heave response spectrum is as presented in Eq.
15, and the mean square response in the small half-
power band about the natural frequency is from Eq.
25.

This estimate of the heave response of the buoy is
appropriate within the half-power band Aw = 2{w,,
provided the system is reasonably linear, the total
damping is small, and the assumptions and
limitations of modal analysis are satisfied.

in this prediction of the heave response of a
mooring, no mention was made of the dependence on
the depth of submergence. This is implicit in the ratio
Ry (wy)/Ry(w,). Newman shows that the
radiation damping coefficient decreases as e ~ 2%,
where & is the wave number of radiated waves. In the
limit that the depth of submergence 2z — oo, then
R, 2{w,) — 0, and the ratio also goes to zero, Thus
the response of the buoy is predicted correctly to be
zero at depths below the region of significant wave
excitation.

The specific results shown in Egs. 29 and 30 for
this example are generally applicable to a broad
range of structures — that is, whenever the modal
exciting force is independent of wave incidence angle.
As shown next, these results also apply whenever the
waves in the frequency band of interest can be
assumed to have random incidence angle.

10

Example 2: Random Incidence Waves

When the incident wave spectrum is distributed
equally over all incidence angles, the results shown in
Eqgs. 29 and 30 apply. This is relatively easy to
demonstrate, even for structures with complicated or
unknown shape functions. For waves of completely
random incidence angle, the directional wave
spectrum and the simple amplitude spectrum are
related in this way:

|
Sy(@B) = 5 S, () .
This may be substituted into Eq. 11, the general
expression for the force spectrum:

27
Srt@) =[5, (wB) IT(w8)12d8

_ L m 2
= S, o | I8 12d8, .....G)

where the angular independent wave spectrum has
been moved outside of the integral. The integral now
is reduced to that which defines the mean square of I’
with respect to §. Therefore, Sg(w) = SFJ (w)
(ri? > 3, which leads to the conclusion that ) = 1.
This immediately leads to the same expression for the
response in the half-power bandwidth as found in
Eq. 30 of the previous example. In fact, for the result
shown in Eq. 30 to be valid, it is necessary that only
the waves whose frequencies lie within the half-power
band be randomly incident. Waves outside of the
band need not be so randomly oriented. As a
practical matter, the high-frequency components of a
seaway tend to be more confused in direction than
the low-frequency waves. Therefore, the validity of
the assumption of randomly incident waves may be
more appropriate than ordinarily supposed,
depending on the natural frequency of the structure,
geographic location, and prevailing weather.

This result applies to an arbitrary shape function.
Any structural symmetries will reduce the range of
angles over which the waves must be randomly in-
cident. For example, it can be shown that for a
structure with two orthogonal vertical planes of
symmetry, such as a steel jacket platform with a
rectangular layout of its primary legs, the waves in
the half-power band need only be randomly incident
over a semicircle (i.e., 180°) for Eqs. 28, 29, and 30
to hold. The result might be used to predict the mean
square response of the two lowest flexural modes.

For many structures these simplifying assumptions
may be justified, and the simple result for the mean
square response within the half-power bandwidth as
shown in Eq. 30 may be applied.

However, at times such assumptions may not be
acceptable, and it may be necessary to measure or
estimate I'(w,3) and to incorporate a directional
wave spectrum STr (w,3). Such a procedure is
followed in the final example.

Example 3;: The Response of a Tension-Leg
Platform to Random Wave Excitation

An important concern in contemporary design of all
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platforms is fatigue. The prediction of the fatigue life
is a process that must include the anticipated wave
statistics and response statistics of the structure.
Numerous authors have reported on difficulties
encountered in estimating the response at the
resonafit frequencies of the structure and have noted
that the response prediction for the frequency band
about resonance is critically dependent on the value
of damping that is selected, This method is directed
specifically at predicting the response in the resonant
band and puts the role of damping in the proper
perspective. Knowledge of the total damping is not
sufficient. It is important to know the way in which
the damping is distributed among radiation and all
other sources.

Consider the hypothetical square tension-leg
platform shown in Fig. 2. At the preliminary design
stage it would be useful to have an estimate of the
response of the structure to a prescribed sea state at
its natural frequencies in heave, pitch, and roll. In
the following example only the heave response will be
estimated. The response in the roll and pitch modes
would be carried out in a very similar fashion, as has
been shown in a thesis supervised by the author.”’
The primary purpose of this example is to illustrate
the method one might use to take the geometry of the
structure and the directionality of the wave spectrum
into consideration,

The influence of both the directionality of the
wave spectrum and the geometry of the structure has
been compressed into the unknown constant C
shown in Eq. 235, the prediction of the mean square
displacement response in the half-power bandwidth.
C, was defined in Eq. 12, which is shown here where
the integral form of the mean square of I'(w,B3} has
been used to replace the { ) notation.

2T
J, 5, (@8)IT (w.8) 12d8

Cr = 1 p2r
Sy (@) 5| IT(w8) 12dp

The directional wave spectrum is prescribed and here
is assumed to be a cosine squared distribution about
some reference angle 3.

2
SplwB) = S, (w) cos? (B=8,) 1. ... (34)

which is valid for —#/2 = 3 — 8, =< /2 and zero
elsewhere. It is noted that

B, +x/2
S, (w) =Sﬁ o SytwB)dB . (35)

o —

By substituting into Eq. 33 the expression for
S,J (w,8) and noting that the common term S, {w)
cancels out, this is obtained:

Bo+7/2 5
[ 2 cos? (8-8,) IT(w,8) 1248
C = B,—%/2 T

=

! ZWII‘ 124,
27T SO (w.5) 8
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Fig. 2 — Tension-leg platform,

The problem has reduced to the need for an
estimate of the angular dependence of IT{w,3) 1.
This task is simplified because an expression valid for
all frequencies, w, is not necessary. An estimate valid
at only the natural frequency of interest, «,, is
sufficient. In Fig. 3, plane progressive deepwater
waves of unit amplitude and frequency, w,, are
shown approaching the tension-leg platform at an
angle 8. The magnitude of the heave force exerted on
a single axially symmetric leg is independent of in-
cidence angle and may be expressed as T, (w) .

The magnitude of the force exerted on the entire
structure will depend primarily on the relative phases
of the four individual leg forces and on any leg in-
teraction effects. The interaction effects are assumed
small compared with the phase effects and are
ignored. The magnitude of the total heave force
accounting for phase effects is given by

L
IT(w,,B8)} | = 4IT, (w,) | cos(Tcosﬁ)

where L is the leg spacing and X is the wave length
corresponding (o a frequency w,. Substitution of this
expression into Eq. 36 yields this result for C;:

B+ 7/2 L
- 2 2
C, = [SB _mcos (8—8,) cos (—}\ cos,B)

[

. cos? (W—fsinﬁ) dag S;Ncosz (L)\Lcosﬁ)



Fig. 3 — Regular waves incident on the tension-leg plat-
form.

This expression was integrated numerically for all
combinations of heave natural period and leg spacing
ranging from 1 to 4 seconds and 100 to 300 ft (30.5 to
91.5 m).” To 0.1% accuracy, C; = 1 for all
directions of incidence, $3,, of the cosine squared
wave spectrum. The cosine squared distribution was
sufficiently broad to smooth out the effects of
varying wave force phases on the four legs. This
unexpected but simple conclusion allows the use of
the simple result of the previous two examples. The
mean square heave response in the damping-
controlled half-power band is given by Eq. 30.

For the large legs of a tension-leg platform the
radiation damping will likely be the greatest con-
tributor to the total damping. Consequently, a
conservative but reasonable upper bound estimate
for the ratio of the radiation to total damping is 1,
and Eq. 30 reduces to

2 2pg3 SH (wo )

(S )Aw = 5 .

My, Wy
An example calculation where:
m,, = 22,000 tons (20 000 Mg), the virtual mass
of the tension-leg platform in heave,
w, = 2.1 radians/s, which corresponds to a
heave period of 3 seconds, and
0.204 fi2-s (1.89 x 102 m?-s), calcu-
lated for a 30-knot (15-m/s) Pierson-
Moskowitz spectrum,

vields a root mean square heave amplitude of

S, (wy)

Vis?y,, = Yin. (6.7mm). ............ (40)

The heave response is insignificant. However, to
arrive at that conclusion by any other means would
have been much more difficult.
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Damping-Induced Coupling

At this point it is appropriate to discuss a routinely
ignored source of error for all response prediction
techniques. The error arises because of the coupling
between otherwise independent vibration modes that
is introduced through damping.

Damping-induced coupling makes it possible for
vibration energy to be transferred between modes.
For the response prediction analysis presented in this
paper, such coupling generally is not significant for
the following reasons,

First, for most ocean structures of interest only a
few modes have low enough natural frequencies to be
excited by the wave spectrum. With a few notable
exceptions the natural frequencies of these modes
tend to be well separated. Due to the assumption of
light total modal damping, the response of each
mode is dominated by the damping-controlled peak
centered on the natural frequency. As long as no two
natural frequencies are so close together that their
response peaks overlap, then the energy transfer by
damping-induced coupling between any two modes
will be insignificant.

In certain types of structures, coincident natural
frequencies do occur. Two common examples are the
lowest end-on and broadside flexural natural
frequencies of steel jacket structures and the pitch
and roll natural frequencies of a square tension-leg
platform as described in the previous example. In
both cases, however, the rectangular or square
geometries of the structures provide symmetries in
the motion of each mode that results in negligibly
small damping-related coupling.

For example, the response of the pitch mode of the
tension-leg platform will result in port-starboard
symmetry of radiated waves. As a consequence, the
radiated waves will generate no roll-exciting moment.
Therefore, even though the response peaks overlap,
no coupling results from the radiation component of
the total damping. Similar arguments may be applied
to the other damping components. Small asym-
metries that do occur in structures give rise to small
coupling terms, which often may be neglected.

Engineering Implementation
of These Results

The implementation of new theoretical results often
requires alteration of accepted engineering practice.
The theoretical importance of the ratio of radiation
to total damping has not been recognized previously.
Experimental techniques and numerical tools for
efficient evaluation of the ratio are unavailable.
Experience will reveal which applications are best
suited to the methods described here. A comparison
with present practice is used to highlight promising
features of the new techniques.

Present practice in dynamic response prediction
requires estimation of the magnitude of the wave
amplitude to wave force transfer function as a
function of wave frequency and wave incidence
angle. This function is denoted by {I' (w,8) | in this
paper. For comparison the method proposed here
does not require an absolute measure of 1T (w,3) |
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but only its relative variation with respect to that at
an arbitrary incidence angle. Thus, it is easier to
estimate and less sensitive to selection of, for
example, the exact value of the inertia coefficient.

Present practice also requires an independent
estimate of the total damping of the structural
natural mode of interest. The recent works of Ruhl
and Berdahl® and Vandiver and Campbell® reveal
that the published results for measured modal
damping on existing structures has been generally
inaccurate. Therefore the ability to estimate the total
damping for new designs has been hampered by a
lack of accurate empirical data.

The method proposed also requires knowledge of
the modal damping but in the rather unique form of
the ratio of the radiation component to total damp-
ing. In some cases this may be easier to estimate as it
depends only on relative quantities. Furthermore, it
is helpful that in the absence of reliable knowledge of
the damping, an upper bound on the ratio may be
used until further information becomes available.

A number of possibilities exist for the engineering
estimation of R,,;/Ry and IT (w,3) 1. Consider the
estimation of IT" (w,B) first. In cases of special
symmetry or diffuse seas as in Examples 1 and 2,
IT {(w,8)] need not be estimated at all. For more
complex structures and/or directionally concentrated
wave spectra, the relative variations of IT' (w,3) |
with 8 may be estimated by one of the following
methods. The first is by carefully considered
engineering approximation as illustrated in Example
3. The second is by a static, not dynamic, finite
element time domain model of the structure, in which
unidirectional regular waves at the natural frequency
of interest are passed by the structure from many
different incidence angles. Thereby, IT' (w,.B8) ! is
obtained for each value of incidence angle. The third
method is by a relatively simple static, not dynamic,
model test. In such a model test unidirectional
regular waves would be passed by the model held
rigidly in place by a sufficient number of load cells to
determine the modal exciting force. In sequential
runs the incidence angle of the model would be varied
to develop IT" (w,G)]. Such a test requires
geometric similarity of the model and Froude scaling,
but not dynamic similitude of the mass and stiffness
distribution. Estimation of modal exciting forces for
rigid body modes such as heave and pitch of a ten-
sion-leg platform are extracted easily from load cell
data. For structural modes that exhibit deformation
of the structure at locations exposed to significant
wave forces, estimation of modal exciting forces
from load cell data requires additional correction for
mode shapes and, therefore, is more difficult,

A number of techniques exist for the estimation of
R,,q/Ry. For simple structures, such as a
freestanding caisson, R,,;, may be calculated
analytically from potential flow theory. For more
complex structures such as tension-leg platforms, a
diffraction theory wave force program may be used.
Coupled with estimates of the remaining sources of
damping, the analysis leads to an estimate of
R 4/Rr.
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Another method for obtaining R,,; is by direct
application of the principle of reciprocity. Data for
IT (w,,B8)| may be obtained by model test or finite
element simulation as described previously. The
mean square of that data with respect to incidence
angle, (IT {(w,.8) |2 } g, may be used directly in Eq.
8 to obtain an estimate of R, ;.

R,,s/R7 also may be hindcast from full-scale
response data. To do this would require simultaneous
measurement of the dynamic response and the
directional wave spectrum, plus an independent
estimate of the directional dependence of IT (w,3) 1.
Given such data, the constant C; could be estimated
and Eq. 25 could be solved for R ,;/Ry. This
procedure has been attempted and reported for the
lowest flexural modes of two separate pile-supported
platforms. The first was a small four-leg jacket in 70
ft (21.3 m) of water. The hindcast value of R, 4 /R ¢
= 0.1.'% The second estimate was obtained for an
gight-leg production platform in 325 ft (99 m) of
water. That estimate was R,,;/Ry = 0.08.1% Both
hindcast estimates required numerous ap-
proximations and small data sets; therefore, rather
large confidence bounds were implied. Field ex-
periments to yield accurate estimates of R,,,/R r are
possible but have not been conducted.

Conclusions

A method has been presented for predicting the
damping-controlled dynamic response of an offshore
structure. The method is applicable to a wide variety
of structures and depends only on the assumptions of
linearity of wave forces and structural response.
Furthermore, it requires that the total structural
damping be small.

There are three principal conclusions to be drawn.
First, the linear wave force spectrum on a structure
may be expressed in terms of the radiation damping
of the structure. This is a consequence of the prin-
ciple of reciprocity for ocean wave forces, which has
been known for many years but has not been applied
to many common ocean engineering problems,

Second, through the use of the above result, a
method for estimating the damping-controlled
response of a structural natural mode has been
presented that does not require explicit calculation of
the modal wave force spectrum.

Finally, the role of damping in the estimation of
dynamic response is placed in the proper perspective.
Linear wave forces and modal damping are not
independent quantities, Therefore, it is not the total
damping of a vibration mode that governs the
response to wave excitation but, in fact, the ratio of
the radiation to total damping. Since this ratio has an
upper bound of 1, the response has an upper bound
independent of the exact value of the damping.

Nomenclature

A{w,B) = plane progressive waves of
amplitude A, frequency w, and
incidence angle 8
C| = constant dependent on Sn(w,ﬁ)
and I' (w,3)
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linear wave forces on fixed body

modal wave force on fixed
structure
modal wave force on fixed

structure due to waves A (w,3)
acceleration of gravity
drag exciting force on fixed body

response of linear
second-order single-degree-of-
freedom system

total modal stiffness

structural and hydrostatic con-
tributions to the modal stiffness

leg spacing on tension-leg plat-
form

modal structural mass

modal added mass

total modal virtual mass

linear nonhydrodynamic damping

linear radiation damping

total linearized damping

linearized viscous hydrodynamic
damping

modal displacement coordinate

mean square displacement in the
band Aw

directional
spectrum

constant force spectrum
modal displacement spectrum
wave amplitude spectrum
directional wave spectrum
wave incidence angle

modal wave force F(w,3) per unit
wave amplitude

mean square of I'(w,3) with
respect to 8

half-power bandwidth
total modal damping ratio

water particle displacement,
velocity, and acceleration

modal wave force

= wave length with frequency w,

density of water

= wave frequency

w, = natural frequency of the mode
| 1 = denotes magnitude of
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